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Tools are needed that can add value to existing drought information and customize it for
specific drought management contexts. This study develops a generalized framework that
can be used to link local impacts with readily available drought information, thus increas-
ing the usability of existing drought products in decision making. We offer a three-step
risk-based framework that can be applied to specific decision-making contexts: (i) identify
hydrologic impact thresholds, (ii) develop threshold exceedance model, and (iii) evaluate
exceedance likelihood. The framework is demonstrated using a study site in
south-central Oklahoma, which is highly susceptible to drought and faces management
challenges. Stakeholder input from interviews are used to identify ‘‘moderate” and
‘‘extreme” thresholds below which water needs are not met for important uses. A logistic
regression model translates existing drought information to the likelihood of exceeding the
identified thresholds. The logistic model offers an improvement over climatology, and the
12-month Standardized Precipitation Index is shown to be the best drought index predic-
tor. The logistic model is used in conjunction with historical drought information to give a
retrospective look at the risk of drought impacts from the beginning of the century. Results
show the 1980s to early 2000s to be an anomalously wet period, and that recent drying
trends and impacts do not appear to be unusual for the 20th century. This drought risk
analysis can be used as a baseline by local managers to guide future decision making under
climate uncertainty.
� 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Drought is one of the costliest climate hazards impacting the U.S. (NCDC, 2015), which has led to an increase in demand
for research and products to aid in drought understanding and management. In the U.S., drought conditions are routinely
monitored and assessed to understand where drought is occurring and how it may evolve (Svoboda, 2000). There are also
national efforts to provide a suite of drought products and tools to assist with water management and drought response,
such as through the National Integrated Drought Information System’s U.S. Drought Portal (www.drought.gov). In addition
to widespread interest in current drought, climate change studies have been undertaken to provide insight into how drought
will change in the future (Dai, 2011, 2013; Sheffield and Wood, 2007; Georgakakos et al., 2014).

A challenge to providing drought information is that drought cannot be universally defined. Although there are four over-
arching definitions of drought: meteorological, hydrological, agricultural and socioeconomic (e.g., Wilhite and Glantz, 1985),
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many different drought indices have been developed (Mishra and Singh, 2010). This is because what constitutes as a
‘‘drought” often depends on the location and impact sector of interest. Thus, a key component of drought management is
to identify, assess, and report local impacts (Wilhite et al., 2007). However, even if local impacts are identified, they are often
not directly diagnosed by routinely available drought products. For example, the most common meteorological drought
index, the Palmer Drought Severity Index (PDSI; Palmer, 1965), corresponds to particular drought categories: e.g., PDSI
values between �1 and �1.99 correspond to a ‘‘Mild Drought” classification. However, particular local impacts – such as
a stream running dry – may be felt at either higher or lower PDSI values. As such, stakeholders in local communities are
likely to make decisions in the context of local impacts, rather than in light of a drought classification such as ‘‘Mild Drought”.
This makes many of the routinely developed drought products not readily useable in local management efforts. Tools are
needed that can add value to existing drought information and customize it for specific decision-making contexts (Lemos
et al., 2012). The goal of this study is to develop and demonstrate a generalized framework that can be used to link local
impacts with readily available drought information, thus increasing the usability of existing drought products in decision
making.

Recent calls to improve decision support have generally focused on using climate information (NRC, 2007, 2009), but can
also apply to drought information. For climate information to be useable, it must be credible, salient, and legitimate (Cash
et al., 2003), as well as perceived to be useful to users’ decision-making contexts (see Lemos et al., 2012 and references
therein). Successful use of climate information requires some iteration between knowledge producers and users (Dilling
and Lemos, 2011) and efforts to close the usability gap can open up new opportunities for interdisciplinary approaches to
creating knowledge (Kirchhoff et al., 2013). In the drought planning process, the involvement of community stakeholders
has been acknowledged as an important component (Wilhite et al., 2005).

Stakeholder involvement is also a key component of risk-based management approaches (Jones, 2001), which have been
touted as the most suitable framework for decisions related to climate risk (Jones and Preston, 2011). Jones (2001) put forth a
risk-management approach that is organized around the likelihood of exceeding critical impact levels. The advantage of risk-
based approaches is that they offer a systematic process for weighing likelihood and consequence, but are also flexible in that
they can be tailored to incorporate the methods that are most suitable for the context (Jones and Preston, 2011).

Here we put forth a generalized risk-based framework that is demonstrated for the Arbuckle Simpson Aquifer (ASA), a
critical groundwater resource located in south-central Oklahoma. The ASA is the main source of the area’s water resources,
which are essential for a variety of uses and activities. Management of the aquifer faces significant challenges that include
planning for climatic stressors and balancing competing needs. Drought conditions and a recent water management dispute
(Shriver and Peaden, 2009; Lazrus, 2016) and resulting legislation prompted a 6-year investigation to set a basin-wide limit
on the amount of water that can be pumped to protect stream flows. It focused on many aspects of drought, hydrology, and
groundwater extraction in the ASA (Osborn, 2009); however, a gap still exists between research findings and concrete meth-
ods that can help to manage the aquifer through prolonged times of drought in accordance with local stakeholder values.
This study examines the influence of drought on ASA hydrology, but focuses on particular drought impacts that are found
to be relevant to stakeholders. These drought impacts are used to develop a risk-based model that translates existing drought
information to locally meaningful knowledge. The model is used in conjunction with historical drought information to give a
retrospective look at the risk of drought impacts in the ASA, and can be used as a baseline by local managers to guide future
decision making under climate uncertainty. The paper is organized by first developing a framework that can be applied to
generic decision-making contexts (Section 2), and is then applied to the ASA (Section 3).
2. Methods

To increase the usability of existing drought information, we offer a three-step risk-based framework that can be applied
to specific decision-making contexts: (i) identify hydrologic impact thresholds (Section 2.1), (ii) develop threshold excee-
dance model (Section 2.2.), and (iii) evaluate exceedance likelihood (Section 2.3).
2.1. Step 1. Identify hydrologic impact thresholds

Identifying impact thresholds are key to developing risk-based strategies (Jones, 2001), in particular for guiding action in
light of climate-related risks (Jones and Preston, 2011; Yohe and Leichenko, 2010). Impact thresholds can be quite diverse,
ranging from simple ‘‘rules of thumb” to more formalized criteria (see Jones, 2001 for examples). Important considerations
for identifying and setting thresholds are provided by Jones (2001); the main role for a threshold is to provide ‘‘an agreed
upon frame of reference linking different knowledge systems”. Thus, thresholds provide an effective link between
stakeholder values and technical modeling.

Because water use decisions are typically made at the local level, stakeholders are mostly concerned about a relatively
small geographic region and about local impacts relevant to their values, needs and decision-making, e.g., water needs
among ranchers in south-central Oklahoma. As such, to ensure that hydrologic impact thresholds are meaningful, first it
is necessary to understand how diverse groups interact with and place value on local water resources and how they may
be impacted by drought conditions. One way of exploring this is through ethnographic methods, including interviews. Data
from interviews with stakeholders can be used to determine important water uses and needs. Interviewee observations can
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also help contextualize and enhance hydrologic records. Thus, providing drought information that uses interview results to
address local priorities helps to ensure the information is useable in decision making (Lazrus, 2016); that is, it is salient to
user communities and legitimately reflects diverse user needs (Lemos et al., 2012).

Stakeholder input can then be used to determine thresholds below which water needs are not met for important uses.
However, threshold selection also needs to consider technical constraints. This is because for a numerical risk-based model,
thresholds need to be quantitatively linked to an existing drought variable. Thus, the threshold selection is limited by data
availability and how well the threshold can be represented by a model.

2.2. Step 2. Develop threshold exceedance model

Risk-based approaches can accommodate a variety of modeling methods (Jones and Preston, 2011), and here we adopt
statistical logistic regression (Helsel and Hirsh, 1995), which is part of the family of generalized linear models (GLM) that
assumes the binomial distribution with the logit link function (McCullagh and Nelder, 1989). Logistic regression is an appeal-
ing choice because it is a simple, flexible, and transparent methodology for directly estimating the probability of an event
occurring (or not occurring). To develop a logistic regression, the first step is to identify an impact threshold, as outlined
above (Section 2.1). For example, minimum streamflow standards are often set to ensure the health of aquatic ecosystems.
Next, the continuous data time series is converted to a categorical time series (i.e., value becomes a ‘‘1” if it exceeds the
threshold and a ‘‘0” if it does not exceed the threshold). The categorical data is then fit by logistic regression, expressed as:
p ¼ expðb0 þ b1X1 þ b2X2 þ � � �bkXkÞ
1þ expðb0 þ b1X1 þ b2X2 þ � � � bkXkÞ
where p is the probability of exceeding the threshold, the coefficients ðb1; b2; � � � bkÞ are the model parameters fitted to the
predictors ðX1;X2; � � �XkÞ. Maximum likelihood estimation is used to estimate the coefficients (Helsel and Hirsh, 1995). In this
analysis, the glm library was used in the statistical software R (R Core Team, 2014).

In this formulation of risk, the consequence is the probability (or risk) of exceeding the threshold (Jones and Preston,
2011). As such, we use the terms ‘‘risk”, ‘‘probability”, and ‘‘likelihood” interchangeably in this paper, but see discussion sec-
tion for further details on this point.

The logistic models are evaluated by examining the objective Akaike Information Criterion (AIC) (Akaike, 1974)
AIC ¼ 2k� 2L
where k is the number of parameters in the model and L is the logarithm of the likelihood function. Models with lower AIC
values are considered better models in terms of both goodness-of-fit and parsimony (i.e., the AIC penalizes models with more
parameters). Further, to provide an estimate of the uncertainty explained by the logistic model, the likelihood R2 was
calculated:
R2 ¼ 1� L
L0
where L is the same as above and L0 is the log likelihood for the intercept-only model (Helsel and Hirsh, 1995). The predic-
tions are also evaluated using the Brier Skill Score (BSS) (Wilks, 1995):
BSS ¼ 1� BSPrediction
BSClimatology
where the BSPrediction is the Brier Score (BS) predicted by the model, defined as:
BSPrediction ¼

XN

i¼1

ðpi � oiÞ

N

where pi refers to the predicted probabilities, oi refers to the observed probabilities (oi = 1 if the observed exceeds the thresh-
old, 0 otherwise), and N is the sample size. BSClimatology is also calculated from the above equation, but for every year uses
climatological probabilities, i.e., the ‘‘stationary” probability of exceeding the threshold that is calculated from the historical
record. For example, if the threshold is the median, then pi = 0.50. BSS values span negative infinity to 1. Compared to
climatology, BSS < 0 indicates that the prediction has less skill, BSS = 0 indicates equal skill, and a BSS > 0 indicates more skill,
with 1 being a ‘‘perfect” prediction. The BSS is evaluated using all of the fitted data, as well as in across-validation mode
(i.e., systematically leave-out and then predict each observation).

2.3. Step 3. Evaluate exceedance likelihood

The advantage of developing a model that relates local impact thresholds to drought indices is that it can readily
incorporate a wide variety of climate information. Often, regional historical drought information is available for a longer
and more complete time series than local hydrologic information. Further, drought indices such as PDSI are routinely
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calculated in climate change studies, and can be used to translate abstract climate change projections to concrete local impli-
cations. Here we focus on using historical information since it has the advantage of being less uncertain than future projec-
tions, but the approach could be readily applied to climate change predictions and projections. Using historical information
can help to quantify past or current climate risks (Wilby and Dessai, 2010) and in some cases be adequate for making deci-
sions about the future (Briley et al., 2015).

The historical drought information is used in conjunction with the threshold exceedance model, resulting in estimates of
the exceedance likelihood. These probabilities provide a measure of the uncertainty of event occurrence. For instance, in a
given month, there might be a 60% chance of exceeding the threshold. However, up to this point, this is just an assessment of
the risk. To be used in riskmanagement, the question is raised: what is the level of risk that is needed to motivate action? And
what actions, if any, are possible? For instance, is a 60% chance enough to implement water restrictions? Or does it need to
be a 70% chance? In this paper, an action cutoff of 50% is utilized (i.e., a probability = 0.5), as it is readily interpretable as the
point above which a threshold exceedance is more likely than not. However, when applied in practice, these action cutoffs
would be determined with stakeholder input. Despite these subjective aspects, the advantage of risk management is that
once these values are set, there is a systematic way to estimate risk and initiate action.
3. Case study application

3.1. Background

The ASA is a critical groundwater resource located beneath about 520 square miles (1350 square kilometers) in south-
central Oklahoma. The aquifer is the main source of drinking water for local municipalities, as well as being important
for mining and ranching activities in the area. In addition, the aquifer feeds many springs and streams in the watershed, pro-
viding water for recreation, tourism, and ecosystems. The aquifer is recharged by precipitation (Christenson et al., 2011),
which has been highly variable over the last century, and the area is therefore prone to periodic drought conditions
(Silvis et al., 2014). In recent years (e.g., 2006, 2011–2012), the region has experienced several devastating droughts
(Shivers and Andrews, 2013), with adverse impacts for the economy, environment, and quality of life.

Given these ongoing issues as well as a recent water management dispute (Shriver and Peaden, 2009; Lazrus, 2016), a 6-
year investigation was undertaken to better understand the hydrology of the area. In particular, a groundwater modeling
study was conducted (Christenson et al., 2011) to establish the quantity of water that can be sustainably extracted from
the aquifer on an annual basis without negatively affecting springs and streams in the area. Results from this study led to
a ruling that reduced the amount of water that could be pumped from the aquifer annually by an order of magnitude
(OWRB, 2013). Given its susceptibility to drought and importance to a diverse community of users with competing needs,
the ASA is an excellent case study to examine.
3.2. Impact thresholds for the ASA

Lazrus (2016) conducted interviews with stakeholders in the ASA to explore how they valued water for different activities
and perceived drought impacts. Interviewees were selected following a snowball sampling strategy whereby initial intervie-
wees were contacted for an interview based on their connection to water management and use in the area, and were asked
to suggest other people who they thought should also be interviewed on these criteria. Interviews were conducted with 38
stakeholders who were actively engaged in relevant sectors including ranching, municipal water management, and tourism
and recreation. The study revealed that most interviewees place a high value on several of the hydrologic services supplied
by the aquifer, including drinking water supply, habitat for plants and animals, and livelihoods (Lazrus, 2016; Towler et al.,
2016a). Interviewees recognized that many of these services were related to groundwater levels in the area, many of which
are monitored by the U.S. Geological Survey (USGS) and the Oklahoma Water Resources Board (OWRB). As such, it was
decided that at least one of the impact thresholds should be based on groundwater depth. The OWRB is the water agency
that is responsible for managing hydrologic services identified by the interviewed stakeholders. The OWRB has the mission
‘‘to enhance the quality of life for Oklahomans by managing, protecting, and improving the state’s water resources to ensure
clean, safe, and reliable water supplies, a strong economy, and a healthy environment.”

To determine the groundwater threshold, we used a groundwater well with one of the longest available records that is
closely monitored by the OWRB: the USGS Fittstown well (USGS 343457096404501). This well was also identified by inter-
viewees as an important source of information: ‘‘I’ve seen the graphs. It must have been from Fittstown [well] that sort of
shows the recharge and drought and how much water. . . is in the aquifers” (Interview #34). The Fittstown well has field
measurements of the groundwater depths from 1959-the present, as well as continuous monitoring since October of
1980. The correlation between the overlapping periods was high (r = 0.98), so the records were combined, resulting in a
record from 1959 to 2014. From this record, monthly averages were calculated, and only about 7% of the monthly data were
missing. The monthly times series is shown in Fig. 1, and shows that there is considerable variability, with monthly averages
for the well depth ranging from a minimum of 93–128 feet below the surface, representing a 35-foot fluctuation. The
smoother shows that the groundwater levels peaked in the mid-1990s, and have since been decreasing. One of the metrics
that can be used is a Z-score, whereby the well levels are standardized by subtracting the mean and dividing by the standard



Fig. 1. Monthly average time series of groundwater depths from the Fittstown well with smoother (blue line). (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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deviation. This way, everything is centered on zero: values above zero would indicate a ‘‘healthy” aquifer and values below
zero signifying a ‘‘stressed” aquifer. A Z-level of zero corresponds to the mean of the Fittstown groundwater depths, or an
actual groundwater level of 111 feet below the surface. This 111-foot threshold was used in the analysis as an indicator
for the risk to the three most important hydrologic services – drinking water, habitat, and livelihoods – mentioned previ-
ously. In this study, we call the 111-foot (or Z-score = 0) threshold the ‘‘moderate” threshold.

The previous study by Lazrus (2016) also found that some, though not all, stakeholders placed a high value on several
other water uses from the aquifer, including recreation, spiritual fulfillment, and cultural practices (Lazrus, 2016; Towler
et al., 2016a). The Chickasaw National Recreation Area (CNRA) provides recreational opportunities, and several of its springs
hold cultural and historical significance. In addition, the springs are unique ecosystems and recent survey work of 23 springs
in Oklahoma revealed the ASA to have the greatest diversity of species of the areas surveyed (Tarhule and Bergey, 2006). As
such, it was decided that one of the thresholds would be based upon spring flows.

To determine a threshold to represent spring flows, we examined data availability for springs in the CNRA, including the
Antelope Spring at Sulphur, OK (USGS 07329849). The spring’s flow was monitored briefly in the late 1980s (11/1985 –
9/1989), and then continuously from October 2002 through the present. The spring is highly influenced by drought, and
National Park Service files indicate that it has been reduced to no flow at some points during the past century (Hanson
and Cates, 1994). The connection between drought and springs was also noted by interviewees, for example this person
referring to the drought in 2011: ‘‘Your last year was the worst [drought], I guess in the history, I mean according to anything
I’ve ever read. That’s worse than even the 1930s, in terms of here. But to give you an example, there used to be 39 springs in
that little – in the [Chickasaw Recreational Area]. There is two – two good ones left – two. . . there may be some during high
water tables, but they don’t last long. So we have two, Buffalo and Antelope” (Interview #1). Although the record is not
particularly long, the Antelope Spring flows are highly correlated with the Fittstown well (r = 0.87; Fig. 2). Fig. 2 shows that
the spring typically stops flowing when the Fittstown groundwater levels fall between 117 and 124 feet. From this, 120 feet
was selected as another threshold for the Fittstown well to serve as a proxy for the risk of no flow at Antelope Springs. In
short, this was considered an indicator for the risk to the other hydrologic services of interest to some stakeholders in the



Fig. 2. Scatterplot of monthly Fittstown groundwater depths and Antelope Springs flows (r = 0.87).
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region: recreation, spiritual fulfillment, and cultural practices. However, an added benefit is that this threshold also relates to
the most important hydrologic services identified (i.e., drinking water, habitat, and livelihoods), but it is more stringent than
the previously determined ‘‘moderate” threshold. This is referred to as the ‘‘extreme” threshold.
3.3. ASA logistic regression model

To develop the logistic regression between the thresholds identified in Section 3.2 and drought indices, we examine two
of the most popular and common drought indices: the Palmer Drought Severity Index (PDSI) and the Standardized Precip-
itation Index (SP). PDSI is a well-known index of meteorological drought (Palmer, 1965) that is based on a water balance of
precipitation, soil moisture, potential evapotranspiration, and runoff. SP only considers how precipitation variability affects
drought (McKee et al., 1993), but can be calculated to consider different time scales. For example, the 1-month SP (SP01)
considers short-term conditions, and the 24-month SP (SP24) considers longer-term conditions (i.e., precipitation from
the last 2 years). Monthly U.S. climate division data, including PDSI and SP, are available through the National Oceanic
and Atmospheric Administration’s (NOAA) National Climatic Data Center (NCDC; http://www7.ncdc.noaa.gov/CDO/CDODivi-
sionalSelect.jsp). We examine Oklahoma climate Division 8, wherein the ASA is located, for the period of 1959–2014 to
correspond with the Fittstown groundwater depths period of record. Although the thresholds were identified from analyses
based on all the months of the year, the logistic regression is developed to focus specifically on the summer, June–July–A
ugust–September (JJAS). JJAS includes the hottest months of the year as well as the low recharge months for the ASA
(Christenson et al., 2011), thus corresponding to the season of the worst drought impacts. To fit the regression, drought
indices are averaged over JJAS, but to understand the extent of the impacts, we use the minimum groundwater level that
occurred during the JJAS season for each year.

The linear correlations between the average JJAS drought indices and the minimum JJAS Fittstown groundwater levels
show the close association between drought and ASA hydrology (Table 1). Results show that SP12 has the strongest relation-
ship (r = 0.87), indicating that the aquifer has a 12 month ‘‘memory” of precipitation in the watershed. PDSI’s correlation
with the Fittstown groundwater levels is 0.75. Although PDSI is not as predictive as SP12, we include PDSI results because
it is such a commonly used index. Fig. 3 shows the scatterplot of SP12 and PDSI versus groundwater levels, both in terms of
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Table 1
Linear correlations (r) between average Jun–Sep (JJAS) drought indices
and minimum JJAS Fittstown groundwater depths.

Index r

PDSI 0.751
SP01 0.505
SP02 0.564
SP03 0.603
SP06 0.699
SP09 0.815
SP12 0.874
SP24 0.752

Fig. 3. Scatterplot of minimum JJAS Fittstown groundwater Z-scores (left axis) and depths (right axis) versus average JJAS SP12 (left) and PDSI (right). Black
line is best fit with 95% confidence intervals (gray shading).
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Z-values (left axis) and actual values (right axis). Results for the moderate threshold show that a Z-value of zero corresponds
to an SP12 value of zero, underscoring the close relationship between precipitation and groundwater. Similarly, a Z-value of
zero corresponds to about a PDSI of zero. This suggests that any time SP12 or PDSI values go below zero, the aquifer has some
risk of becoming stressed.

For the moderate threshold, we fit a logistic regression using SP12 and PDSI (Table 2, top). As expected, the SP12 model
has a lower AIC value than the PDSI model (32 versus 48) and a higher R2 value (0.63 versus 0.42). In addition, the BSS scores
for SP12 and PDSI (0.69 and 0.46, respectively) indicate that both models show skill over just using climatology. That is, it is
better to use this model than to just use the historical probability, where we would have assumed that every year the
likelihood of exceedance was 61% (i.e., the percent of time the minimum JJAS levels went below the moderate threshold).
Fig. 4a shows that as the SP12 decreases (gets drier), the likelihood of exceeding the moderate threshold increases. This is
Table 2
Coefficients and goodness-of-fit statistics for moderate and extreme thresholds using SP12 and PDSI.

Threshold Intercept (sea) SP12 (sea) PDSI (sea) AICb R2 BSSc BSS_xvald

Moderatee 1.43 (0.58) �4.50 (1.2) – 32 0.63 0.69 0.65
1.08 (0.45) – �1.09 (0.29) 48 0.42 0.46 0.42

Extremef �4.98 (1.7) �5.50 (2.1) 22 0.60 0.60 0.51
�3.08 (0.85) – �1.01 (0.34) 31 0.41 0.43 0.36

a se = standard error.
b AIC = Akaike Information Criterion.
c BSS = Brier Skill Score.
d BSS_xval = BSS cross-validated.
e Depth < 111 feet or Z-score < 0.
f Depth < 120 feet.



Fig. 4. Logistic regression of average JJAS SP12 (left) and PDSI (right) and the probability of the Fittstown groundwater depth exceeding the moderate
threshold.

Table 3
Likelihood of exceedance for moderate and extreme thresholds using average JJAS SP12 and PDSI.

SP12 P (Moderate) P (Extreme) PDSI P (Moderate) P (Extreme)

2 0 0 3 0.1 0
1.5 0 0 2 0.25 0.01
1 0.04 0 1 0.50 0.02
0.5 0.31 0 0 0.75 0.04
0 0.81 0.01 �1 0.90 0.11

�0.5 0.98 0.10 �2 0.96 0.26
�1 1 0.63 �3 0.99 0.49
�1.5 1 0.96 �4 1 0.72
�2 1 1 �5 1 0.88
�2.5 1 1 �6 1 0.95
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quantified in Table 3. We can see that from SP12 = 1 to SP12 = 0 to SP12 = �1, the risk of exceedance rapidly jumps from 4%
to 81% to 100%, indicating how quickly the aquifer can be designated as ‘‘stressed” by this metric. Results for PDSI are shown
in Fig. 4b, and in Table 3, showing that the likelihood of exceedance increases more gradually for decreasing PDSI values.

For the extreme threshold, a logistic regression is also fit. From Table 2 (bottom), we can see that similar to the moderate
threshold, the AIC and R2 values indicate that the SP12 model is preferable to the PDSI model (i.e., 22 versus 31 for AIC, and
0.60 versus 0.41 for R2). The BSS scores again indicate that including SP12 or PDSI in the logistic model is better than clima-
tology (0.60 and 0.43). That is, if we had used climatology, we would have assumed that every year the likelihood of excee-
dance was 14% (as calculated using the minimum JJAS level from each year of the historical record). These results also show
that for both thresholds, the cross-validated BSS is very similar to the fitted BSS, indicating that these models are also skillful
in a predictive mode. Fig. 5 shows the logistic fits for both predictors, and the likelihoods of exceedance are quantified in
Table 3. In terms of exceeding the extreme threshold, the risk also increases rapidly for SP12: from SP12 = 0 to SP12 = �1
the risk moves from 1% to 63%.
3.4. Historical exceedance likelihoods for the ASA

Although monthly drought data from 1959 to 2014 were used to develop the exceedance model (Section 3.3), NOAA’s
NCDC has drought data that is available from 1896. This longer time series of PDSI and SP12 is used with the logistic regres-
sions to reconstruct the likelihood of exceeding the thresholds. Results for SP12 and PDSI are similar, but results are only
shown for SP12.

The monthly exceedance likelihoods for the moderate threshold shows considerable variability (Fig. 6a), and does not
show any notable regime-type behavior. This is not surprising, given that this moderate threshold was derived from the



Fig. 5. Logistic regression of average JJAS SP12 (left) and PDSI (right) and the probability of the Fittstown groundwater depth exceeding the extreme
threshold.
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mean groundwater level. Likelihoods for the extreme threshold show more discernable peaks and valleys (Fig. 6b) than are
seen for the moderate threshold (Fig. 6a). For the extreme threshold, most recently, the highest likelihoods occurred in 2011,
which was a recent severe drought year which corresponded to no flow at Antelope Springs, as well as in 1956, another
severe drought year (Silvis et al., 2014), which according to National Park Service files also corresponded to a period of
no flow (Hanson and Cates, 1994).

Figs. 6a and 6b are useful for a risk assessment, but to be relevant to risk management, we need to identify a level of risk
that can initiate some hypothetical action. We emphasize that further work with stakeholders would be needed to determine
one or more operational action cutoffs, but here we illustrate the results using a value of 0.5 (Fig. 6c and 6d). That is, if the
exceedance probability from Fig. 6a and 6b was >0.5, then it is represented by a black vertical bar (Fig. 6c and 6d), which
indicates months in which a hypothetical action would be warranted. We point out that an action cutoff of 0.5 is equivalent
to an odds ratio of ‘‘1”, which is the point at which a threshold exceedance is more likely than not.

Results for the moderate threshold with a cutoff of 0.5 indicates that some sort of action would have been prudent quite
frequently (Fig. 6c). Again, this is expected for several reasons. First, the threshold is quite conservative. In addition, the
groundwater levels are closely tied to precipitation in this area, which has historically been quite variable and drought-
prone (Silvis et al., 2014). The fact that it is so frequently ‘‘risky” to exceed this threshold is partially why the groundwater
levels are so closely monitored. This indicates that the risk-based approach may not be as useful for moderate thresholds, as
compared to more stringent thresholds.

Results for the extreme threshold using the 0.5 cutoff showmore regime-type behavior (Fig. 6d). Here, the need for action
is more intermittent than it was for the moderate threshold, but it also shows that the last century is punctuated with
periods when the risk of the springs going dry is quite high. The notable exception to this is the 1980s to the early 2000s,
which appear to be an anomalously wet period. Aside from that wet period, the higher likelihoods of exceedance for the
recent period (since the early 2000s) seem representative of the likelihoods seen in the rest of the 20th century.

We also validated the results by comparing years where there was a need for action (i.e., the probability was >0.5) and
whether or not the Fittstown groundwater level actually went below the extreme threshold. We found that in the 56 years of
the Fittstown record (1959–2014), the minimum JJAS groundwater level went below the extreme threshold in 8 years. Using
the 0.5 cutoff, the model predicted this correctly in 7 out of 8 years, as well as one year (1963) that was incorrectly predicted
to exceed the threshold.
4. Discussion

Understanding which drought impacts are important to local stakeholders, given their values and uses of local water
resources, can help identify impact thresholds for local management. However, management challenges can arise when
stakeholders have diverse perspectives and value water differently. In this study we were able to identify two thresholds,
a ‘‘moderate” and ‘‘extreme” threshold. We note that even though the latter threshold was developed for the hydrologic
services for which there was less consensus among stakeholders (i.e., recreation, spiritual fulfillment, and cultural practices),



Fig. 6. a, b: Reconstruction of the probability of exceeding the moderate (left) and extreme (right) threshold from average JJAS SP12. Red circles are 1956
and 2011. c, d: Results from a & b are reduced to ‘‘Yes” or ‘‘No” for action cutoff of 0.5 for the moderate (left) and extreme (right) threshold.
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it actually also covers the hydrologic services that were valued by all stakeholders (i.e., drinking water, habitat, and liveli-
hood). Thus, the extreme threshold could be used as a way of combining different perspectives, which has been found to
be a key to developing successful solutions (Verweij et al., 2006). Further, increased understanding of the diverse and oppos-
ing viewpoints held by stakeholders in the ASA (Lazrus, 2016) can help to understand how to reduce disagreement among
stakeholders and promote sustainable water management in a changing climate (Towler et al., 2016a).

It is important to note that at present, groundwater use from the ASA is relatively small (Christenson et al., 2011), which is
likely why we were able to discern such a strong climate signal. The opposite has been found in some other areas of Okla-
homa, where trends in groundwater levels seem to be more closely associated with human activities than to climate (Tarhule
and Bergey, 2006). In those cases, it might be necessary to add another explanatory variable to the model, such as ground-
water pumping, to better quantify the risk. In the ASA there are increasing demands to extract more groundwater from the
area, and so these results provide a useful baseline to consider in future management decisions.

We also point out that in our formulation of risk, we are only quantifying the risk in terms of physical variables, i.e.,
drought indices. However, it is being increasingly acknowledged that climate-related risks result from both physical climate
hazards and societal vulnerability (Oppenheimer et al., 2014). In this paper, we addressed the latter through using interviews
to understand stakeholder values, but there are other important socio-demographic characteristics that were not considered
here. We also note that thresholds and action cutoffs may change over time, underscoring the importance of sustained inter-
action with stakeholders (Dilling and Lemos, 2011).

5. Summary and conclusions

This paper provides a general three-step risk-based framework for identifying, modeling, and evaluating drought risks for
local impacts. The framework is applied to the ASA, a critical groundwater resource in south-central Oklahoma. Although
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several hydrologic studies have been commissioned in the ASA (Osborn, 2009), additional methods may provide local man-
agers with tools to better manage their water rights under increasing climate strain and demands for growth. This study
develops a generalized approach that elucidates local risks by querying stakeholder knowledge and leveraging existing
drought information.

Impact thresholds are determined by weighing stakeholder input from interviews and technical constraints. From this,
two thresholds were identified, including an ‘‘extreme” threshold that was relevant to the hydrologic services that were val-
ued by all of the stakeholders surveyed. To quantify the risk of exceeding the threshold, a logistic regression is developed
between the identified thresholds and existing drought indices. The logistic models offer an improvement over climatology,
and SP12 is shown to be the best drought index predictor. The logistic model is used in conjunction with historical drought
information to give a retrospective look at the risk of drought impacts in the ASA from the beginning of the century. Results
show the 1980s to early 2000s to be an anomalously wet period, and that recent drying trends and ceased spring flows do
not appear to be unusual for the 20th century. This is complementary to recent studies that have looked at the longer term:
for instance, using tree-ring reconstructions, Tarhule (2009) concluded that droughts in the area were most common during
1700–1770 and 1900–1960. The 1800s were found to be a period of modest and infrequent droughts, as was the period from
1960 to 2004 (the last year of their analysis).

Historical context provides important perspective for preparing for future climate impacts. This is critical in an already
drought-prone region, as studies suggest that there is likely to be increased drying over the ASA in the future (Towler
et al., 2016b; Liu et al., 2012). In future work, the logistic regression can be paired with climate model predictions and pro-
jections to examine potential future trends and implications for risk management and planning.

Given the importance of adequate water resources for societal and ecological needs, there is an imperative to provide
drought risk information that can facilitate decision making. By developing tools that can directly bridge existing drought
information with local impacts, a more comprehensive understanding of current and future drought risk can be gained to
inform management and planning.
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